Two-Stage Two-Locus Models in Genome-Wide Association
A new paper by Evans et al. in PLoS Genetics looks very interesting:
Two-Stage Two-Locus Models in Genome-Wide Association.
Evans DM, Marchini J, Morris AP, Cardon LR.
PLoS Genetics 2006 Sep 22;2(9) [PubMed]
Studies in model organisms suggest that epistasis may play an important role in the etiology of complex diseases and traits in humans. With the era of large-scale genome-wide association studies fast approaching, it is important to quantify whether it will be possible to detect interacting loci using realistic sample sizes in humans and to what extent undetected epistasis will adversely affect power to detect association when single-locus approaches are employed. We therefore investigated the power to detect association for an extensive range of two-locus quantitative trait models that incorporated varying degrees of epistasis. We compared the power to detect association using a single-locus model that ignored interaction effects, a full two-locus model that allowed for interactions, and, most important, two two-stage strategies whereby a subset of loci initially identified using single-locus tests were analyzed using the full two-locus model. Despite the penalty introduced by multiple testing, fitting the full two-locus model performed better than single-locus tests for many of the situations considered, particularly when compared with attempts to detect both individual loci. Using a two-stage strategy reduced the computational burden associated with performing an exhaustive two-locus search across the genome but was not as powerful as the exhaustive search when loci interacted. Two-stage approaches also increased the risk of missing interacting loci that contributed little effect at the margins. Based on our extensive simulations, our results suggest that an exhaustive search involving all pairwise combinations of markers across the genome might provide a useful complement to single-locus scans in identifying interacting loci that contribute to moderate proportions of the phenotypic variance.
0 Comments:
Post a Comment
<< Home